Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

175°C-Capable Thermoplastic Elastomers for Automotive Air Management and Sealing Applications

2007-11-28
2007-01-2576
Flexibility, oil resistance, and the need for heat resistance to 150°C-plus temperatures have traditionally limited automotive design engineers to two options - thermoset rubber or heat-shielding conventional thermoplastic elastomers (TPE). Both of these options present limitations in part design, the ability to consolidate the number of components in a part of assembly, and on total cost. This paper presents a class of high-performance, flexible thermoplastic elastomers based on dynamically vulcanized polyacrylate (ACM) elastomer dispersed in a continuous matrix of polyamide (PA) thermoplastic. These materials are capable of sustained heat resistance to 150°C and short-term heat resistance to 175°C, without requiring heat shielding. Recent advancements in blow molding and functional testing of the PA//ACM TPEs for automotive air management (ducts) and underhood sealing applications will be shown.
Technical Paper

180MPa Piezo Common Rail System

2006-04-03
2006-01-0274
The challenge for the diesel engines today is to reduce harmful emissions, such as particulate matter (PM) and Nitrogen oxides (NOx), and enhance the fuel efficiency and power, which are its main advantages. To meet this challenge, DENSO has developed an advanced common rail system (CRS) that uses piezo actuated fuel injectors capable of delivering up to five injection events per combustion cycle at 180MPa, currently the world's highest commercially available diesel fuel injection pressure. The DENSO piezo injector incorporates an internally developed piezoelectric element that energizes quicker than its solenoid counterpart, thereby reducing the transition time for the start and end of the fuel injection event. The piezoelectric element and unique passage structure of the DENSO injector combine to provide a highly reliable and responsive fuel injection event.
Technical Paper

1941 CFR ROAD DETONATION TESTS - Further Experience with New Methods (Compiled from Report of the Cooperative Fuel Research Committee)

1942-01-01
420122
The cooperative road tests carried out during 1941 have added considerable information and experience to that already existing on the subject of road detonation testing. Extensive data were obtained on the fuel requirements of the 1940 and 1941 models of the three most popular cars. Corresponding data were obtained on the knocking characteristics of current gasolines representing the bulk of the sales volume in various parts of the United States. On account of large variations in octane-number requirement among different cars of the same make - due to differences in ignition timing, combustion-chamber deposit, and other causes - and on account of variations in commercial gasolines, it has been necessary to use statistical methods of analysis in the appraisal of fuel and engine relationships. These methods of analysis have been applied in a number of ways, and have proved very useful.
Technical Paper

1953 Paper Jet Operations in Retrospect with Connotations for the Supersonic Transport

1965-02-01
650231
A first attempt to study civil aircraft operations comprehensively, prior to having the airplane, occurred before the initial operation of U.S. subsonic jets. One airline carried out a manual-simulated “paper jet” operation lasting fifteen months. Today, computerized simulation of machines, methods, and operations has become commonplace, and replaces the slide rule and tedious day-by-day inputs of aircraft operational criteria. Computerized simulations are also applied to every aspect of the SST design and operations. These are important, but the results being should be used with caution and judgement.
Technical Paper

1962 passenger-car engineering trends

1962-01-01
620066
The phenomenal success of the small car is leading to many engineering changes in the automobile industry. It has brought increased emphasis on weight reduction on both small and full-size cars. Improving reliability and designing to eliminate grease fittings have also become important objectives.
Technical Paper

1971 Cars and the “New” Gasolines

1971-02-01
710624
The recent introduction of lower compression ratio engines and the concurrent marketing of unleaded and low-lead content gasolines of generally lower octane number made it appropriate to investigate the interrelationships of engine performance and gasoline octane quality using the “new” engines and fuels. Programs were carried out to compare fuel economy and acceleration performance of eight matched pairs of 1970 and 1971 automobiles. In addition, octane requirements were obtained on 43 1971 cars with 3,000-12,000 deposit miles. A total of 146 unleaded, low-lead, and leaded regular gasolines obtained at service stations throughout the country were analyzed, and the road octane performance of these gasolines was determined using 1970 and 1971 cars designed for regular gasoline.
Technical Paper

1974 Vw Energy-Absorbing Bumper System

1973-02-01
730033
The energy-absorbing bumper system designed for the 1974 Volkswagen in described. Theoretical requirements in bumper design are explained, with emphasis on bumper height, energy tolerance needs, energy absorption, and systems for absorbing the energy involved. The six systems studied are assessed, and the final design chosen is explained. The paper also compares bumper requirements as specified in Europe and the United States.
Technical Paper

1978 to 1980 Ford On-Road Fuel Economy

1981-02-01
810383
Since 1978 Ford Motor Company has been surveying the fuel economy of employes who lease new light duty vehicles from the Company. Winter and summer survey data for the three years are analyzed and compared. Car results show a significant and steady increase in average on-road fuel economy over the three year period. The percent differential between EPA measured and actual on-road fuel economy has lessened substantially since 1978. Furthermore, the percent difference between EPA and on-road is essentially constant over the range of EPA values for each of the three years. Limited fuel economy results for 1980 trucks are also discussed.
Technical Paper

1980 Prince Edward Island Auto Fuel Economy and Emissions Test Program

1982-02-01
821230
A program of emission testing and carburetor adjustment to reduce the levels of hydrocarbons and carbon monoxide in the exhaust gases and to demonstrate fuel economy improvements was held in Charlottetown during the week of July 14 to 19, 1980. The program was a co-operative effort of the Centre of Energy Studies of the Technical University of Nova Scotia, the Mobile Sources Division of the Air Pollution Control Directorate, Environment Canada and the Prince Edward Island Energy Corporation. Five hundred and twenty vehicles were tested during the period. The program was well received by the public and indicated that only 32% of the vehicle fleet were within specification when initially tested. A large percentage of these vehicles were satisfactorily adjusted. Mailback record cards were used to obtain an indication of the improved fuel economy. The data suggests that a substantial saving in fuel can be attained through carburetor tuning for low exhaust emissions.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

1983 Ranger Pickup

1981-11-01
811270
The Ford Ranger will be a domestically built, small pickup truck engineered to many design objectives typical of a fullsize pickup, yet with four cylinder engine fuel efficiency. Ranger is a full-function on-and-off road pickup truck with a uniquely smooth ride and a capacity to carry up to a 725.7 kg. (1600 lb.) payload. The truck features a three passenger body-on-frame cab and a double wall pickup box with provision for 1.2m × 2.4m (4 ft. × 8 ft.) sheets of construction material. Featured in this comprehensive paper are the engineering highlights and innovations contributing to the accomplishment of these Small Truck objectives.
Technical Paper

1985 Light-Duty Truck Fuel Economy

1980-10-01
801387
This paper addresses fuel economy standards that can be obtained in 1985 for two-wheel drive LDT's using existing technology. To estimate the fuel economy, the fleet of LDT's is first segmented into market classes based on the concept of utility. The 1985 sales share of each class is predicted from an extrapolation of current trends as well as published sales forecasts. The 1985 fuel economy of each market class is projected using 1) MY '80 truck technology and fuel economy as a baseline, 2) a regression equation that allows an estimate of fuel economy based on the weight, drag, and engine displacement, and 3) the addition of fuel-efficient technologies. Estimates of weight reduction and new model introduction within each market class were derived from published manufacturers' plans. Based on this methodology, this analysis concludes that a fleet fuel economy in excess of 24/25 mpg is feasible for 1985 without/with the use of diesel engines.
Technical Paper

1988 Chevrolet/GMC Full-Size Pickup Truck Aerodynamics

1987-11-01
872274
This paper is a summary of the aerodynamic development of the 1988 Chevrolet and GMC pickup truck. Comprehensive drag reduction work was performed with clay models from the original concept through the detailed full-scale model. In addition, the aerodynamic development included wind rush noise reduction, optimization of engine cooling air flow, and body surface pressures for HVAC performance.
Technical Paper

1989 Suzuki Sidekick/Geo Tracker Body structure Analysis

1989-11-01
892536
This paper presents a summary of body structural analysis applied to the 1989 Suzuki Sidekick/Geo Tracker at various stages of development and design. The structure analysis techniques were applied previously to rigidity, vibration, strength, crashworthiness and optimization. The studies confirm that the CAE technique for body structure analysis is more beneficial if it is utilized in the earlier structure development stages particularly for vibration and crashworthiness. Through the extensive use of the structural analysis technique in conjunction with the experiment, the design concept of the Sidekick/Tracker body has been optimized to a most extent.
Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

1997 GM 5.7 LITER LS1 V8 ENGINE

1997-02-24
970915
General Motors Powertrain Group (GMPTG) has developed an all new small block V8 engine, designated LS1, for introduction into the 1997 Corvette. This engine was designed to meet both customer requirements and competitive challenges while also meeting the ever increasing legislated requirements of emissions and fuel economy. This 5.7L V8 provides increased power and torque while delivering higher fuel economy. In addition, improvements in both QRD and NVH characteristics were made while meeting packaging constraints and achieving significant mass reductions.
Technical Paper

1998 POLARIS INDY TRAIL: An Entry by Minnesota State University, Mankato in the “Clean Snowmobile Challenge 2000”

2000-09-11
2000-01-2574
A student team from Minnesota State University, Mankato's Automotive Engineering Technology program entered the Clean Snowmobile Challenge 2000. A 1998 Polaris Indy Trail was converted to indirect fuel injection running on a computer controlled closed loop fuel system. Also chassis, exhaust, and hood design modifications were made. The snowmobile was designed to compete in eight events. These events included acceleration, emissions, hill climb, cold start, noise, fuel economy/range, handling/driveability, and static display. The snowmobile modifications involved every aspect of the snowmobile with special emphasis on emissions and noise. Laboratory testing led to the final design. This paper details the modifications and test results.
Technical Paper

1998 Ranger Pulse Vacuum Hublock 4x4 System

1997-11-17
973237
This paper describes the design and features of the 1998 Ranger Pulse Vacuum Hublock (or PVH) 4x4 system. This part-time 4x4 system with wheel-end disconnect offers optimized fuel economy in a robust design that requires no regularly scheduled maintenance under normal driving conditions. The system allows silent 4WD shift on the fly at any speed or temperature and does not require reversing the vehicle to disengage the hublocks.
X